
Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

STITCHES
SoS Technology Integration Tool Chain for

Heterogeneous Electronic Systems

Dr. Evan Fortunato

1

This Research was developed with funding from the Defense Advanced Research Projects Agency (DARPA)

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the
official views or policies of the Department of Defense or the U.S. Government

Abstract # 18869

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

The Goal: Composing Systems That
Keep Up With The Times

• DoD has long assumed that homogeneous, fixed-configuration weapon systems
are the only way to meet their goals of a superior military force

– Must last a long time, so requirements are developed for 30+ years out.

– Meeting 30 year out requirements with today’s technology is hard

– Result is the best design possible with 20-30 year old technology and
updates are not efficient with respect to time or cost…

• Open Architectures Try to Solve this Problem

– Requires enormous effort to reach a “global” consensus on the system architecture,

• Even then, it is only a “local” version of “global”

• Global standards have to work for everyone, so aren’t optimized for your application

– Result is heterogeneous components in a homogeneous architecture – which doesn’t
work because the architecture needs to evolve with the technology

– Attempts to build flexibility into the architecture (to support heterogeneity) just result
in overly complex infrastructures that still don’t anticipate the new technologies

• What if Global Interoperability Didn’t Require a Common Interface at ALL?

2

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Understanding the Trade between Local and
Global Message Standards…

• Local Message Standards

– Flexible – You Can Add New
Messages Easily

– Inefficient - Require N2 Transforms
(all pairs) for Interoperability

• Global Open Standards

– Efficient – N Transforms to/from
the Global Standard

– Not Flexible – Can’t change
without tremendous effort

• Incremental Standards (STITCHES)

– Efficient – ~N Transforms for
Interoperability

– Flexible – You Can Add New
Messages Easily

 3

G

M5 M4

M3

M2

M1

M5 M4

M3

M2

M1

M5 M4

M3

M2

M1

Transform M2 <- M1:
 M2 = T21(M1)
Transform M5 <- M1:
 M5 = T51(M1)

Transform M2 <- M1:
 M2 = T2G(TG1(M1))
Transform M5 <- M1:
 M5 = T5G(TG1(M1))

Transform M2 <- M1:
 M2 = T21(M1))
Transform M5 <- M1:
 M5 = T54(T43(T32(T21(M1))))

M# = Message #

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Capabilities We Set Out to Develop

• Global Interoperability without Global Consensus on Interface Specification

– Stateless Interactions (Message Transformations)

– Stateful Interactions (Multiple Source Messages Required to Form Destination Message)

• Efficient Reuse in and Evolution of the Architecture

• Near Real-Time Construction of the SoS from Specification

• Optimized Implementation of Interfaces that are Small and Fast

– Support for High Speed Packed Representations

• Allow Legacy Subsystems and Existing Open Architectures to Interoperate

• Cyber Defenses via Heterogeneity & Run-Time Execution Monitors

• Hierarchical and Resilient SoS Configurations

4

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Key Innovation:
Field and Transform Graph (FTG)

• Fields are Nodes in the Graph and Contain:
– A set of subfields (which are defined by other nodes in the graph)

– A set of properties (mathematically precise specification of node properties)

– Note: All node information is defined locally, no coordination required!

• Nodes are Connected by Links That Define the Transform from
Source to Destination Nodes
– Each link requires a pair wise human coordination between the

source and destination

– Transforms Expressed in a Domain Specific Language Built for this Purpose

– Graph algorithms determine a composition of transforms (path through
the FTG) that produce the destination message given a source message

• No Global Coordination Required to Update or Evolve Data in
the FTG

 5

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Example of Building Out the FTG

6

Start with Sensor 1 (Order Doesn’t Really Matter, but Details are Order Dependent)

AR.Sensor1.OutputMessage
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {Detections}
{Properties}

Each referenced subfield type
points to another FTG node

[Just showing time here]

AR.Sensor1.Time
• Value
{Properties}

Color Code:
Black is a Field Node that represents a Message
Red is a sub-Field Instance Name (referring to a Field Node as its type)
Blue is for Properties (not demonstrated here)
Green is for Transforms (used in later slides)
Purple/Pink is Voice Track Information

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Add in a Tracker Message

7

AR.Sensor1.OutputMessage
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {Detections}
{Properties}

AR.Sensor1.Time
• Value
{Properties}

AR.Tracker.InputMessage
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {Detections}
{Properties}

AR.Tracker.Time
• Value
{Properties}

Add in the Tracker

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Define a Transform

8

AR.Sensor1.OutputMessage
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {Detections}
{Properties}

AR.Sensor1.Time
• Value
{Properties}
Transforms

AR.Tracker.InputMessage
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {Detections}
{Properties}

AR.Tracker.Time
• Value
{Properties}
Transforms
 return (AR.Sensor1.Time -17)

Now Define a Transform
From AR.Sensor1.Time to

AR.Tracker.Time

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Add in the Reverse Transform

9

Add in a Reverse Transform
from AR.Tracker.Time to

AR.Sensor1.Time

AR.Sensor1.OutputMessage
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {Detections}
{Properties}

AR.Sensor1.Time
• Value
{Properties}
Transforms
 return (AR.Tracker.Time +17)

AR.Tracker.InputMessage
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {Detections}
{Properties}

AR.Tracker.Time
• Value
{Properties}
Transforms
 return (AR.Sensor1.Time -17)

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Add in a Display Message

10

AR.Display.SensorInputMessage
• Source
• Time
• Coverage
• NumDetects
• {Detections}
{Properties}

AR.Display.Time
• Value
{Properties}
Transforms
 return (AR.Sensor1.Time -36)

Add In a Display, and map AR.Sensor1.Fields to AR.Display.Fields

AR.Sensor1.OutputMessage
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {Detections}
{Properties}

AR.Sensor1.Time
• Value
{Properties}
Transforms
 return (AR.Tracker.Time +17)

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Add in the Reverse Transform

11

AR.Display.SensorInputMessage
• Source
• Time
• Coverage
• NumDetects
• {Detections}
{Properties}

AR.Display.Time
• Value
{Properties}
Transforms
 return (AR.Sensor1.Time -36)

and add in the Reverse Maps
from AR.Display.Fields back to

AR.Sensor1.Fields

AR.Sensor1.OutputMessage
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {Detections}
{Properties}

AR.Sensor1.Time
• Value
{Properties}
Transforms
 return (AR.Tracker.Time +17)
 return (AR.Display.Time+36)

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

What about the Gaps

12

Tracker Also Has An Output Message

AR.Tracker.OutputMessage
• Source
• Time
• NumTracks
• {Tracks}
{Properties}

AR.Tracker.Time
• Value
{Properties}
Transforms
 return (AR.Sensor1.Time -17)

AR.Display.TrackerInputMessage
• Source
• Time
• NumTracks
• {Tracks}
{Properties}

AR.Display.Time
• Value
{Properties}
Transforms
 return (AR.Sensor1.Time -36)

And the Display has an Track Input Message

… but there is no Transform from
AR.Tracker.Time Directly to AR.Display.Time

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Transform Chains Can Resolve the Gaps

13

AR.Tracker.OutputMessage
• Source
• Time
• NumTracks
• {Tracks}
{Properties}

AR.Tracker.Time
• Value
{Properties}
Transforms
 return (AR.Sensor1.Time -17)

AR.Display.TrackerInputMessage
• Source
• Time
• NumTracks
• {Tracks}
{Properties}

AR.Display.Time
• Value
{Properties}
Transforms
 return (AR.Sensor1.Time -36)

… but there is a chain transform through
AR.Sensor1.Time that can be constructed

AR.Sensor1.Time
• Value
{Properties}
Transforms
 return (AR.Tracker.Time +17)
 return (AR.Display.Time+36)

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Assign Fields Between Messages

14

AR.Display.SensorInputMessage
• Source
• Time
• Coverage
• NumDetects
• {Detections}
{Properties}

Explicitly Map Fields (via Assign operator)
from AR.Sensor1.OutputMessage to
AR.Display.SensorInputMessage using the
field transforms define in the FTG

AR.Sensor1.OutputMessage
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {Detections}
{Properties}

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

A Simple Example To Illustrate STITCHES

• A Number of Subsystems Have Been Developed Independently

– Sensors (Radars, EO Cameras, WAMI, etc.), Trackers and Fusers, Display Systems, Sensor
Resource Managers, etc.

– No common standard for message definitions

– Information content is compatible, so they “should” be able to interoperate

• Want to Build Mission Configurations

– Goal: Supply specifications of mission configurations and have the system autogenerate
the code to make the mission work

– Assumes that the specified mission is supported by the subsystems

• Consider a Simple 3 Subsystem, ISR Configuration Specification

– Radar: Produces AR.Radar.DwellMessage

– Tracker: Consumes: STR.Tracker.SensorMessage; Produces: STR.Tracker.TrackMessage

– Display: Consumes: G.Display.SensorMessage, G.Display.TrackMessage

– Desired Connections:

• Radar -> Tracker; Radar->Display; Tracker->Display

15

EO: Electro-Optical
WAMI: Wide Area Motion Imagery
ISR: Intelligence, Surveillance,
Reconnaissance

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Resolving the (Notional) FTG to Form Composite
Transformations

16

Desired

Transformation

Desired

Transformation

AR.Radar.

DwellMessage

STR.Tracker.

SensorMessage

Connection 1:
(Radar to Tracker)

AR.Radar.

DwellMessage

G.Display.

SensorMessage

Connection 2:
(Radar to Display)

AR.Radar.

DwellMessage

LM.Tracker.

InputMessage

NG.Radar

Message1

AF.OMS.

RadarMessage

STR.Tracker.

SensorMessage

G.Display.

SensorMessage

Top Level FTG Relevant for this Example:

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Resolving the (Notional) FTG to Form Composite
Transformations

17

Synthesized

Composite
Transformation

AR.Radar.

DwellMessage

STR.Tracker.

SensorMessage

Synthesized

Composite
Transformation

Connection 1:
(Radar to Tracker)

AR.Radar.

DwellMessage

G.Display.

SensorMessage

Connection 2:
(Radar to Display)

AR.Radar.

DwellMessage

LM.Tracker.

InputMessage

NG.Radar

Message1

AF.OMS.

RadarMessage

STR.Tracker.

SensorMessage

G.Display.

SensorMessage

Top Level FTG Relevant for this Example:

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Network

What Does STITCHES Produce?

18

Interface

Serialize

Transport

SSI Shim

MAC

Radar
Core

Transform

Serialize

Transport

SSI Shim

MAC

Tracker
Core

Interface

Deserialize

Transport

EM

SSI Shim

MAC

Display
Core

Interface

Serialize

Transport

MAC

Splitter

SSI Shim

Transform

EM

Deserialize

Transport

MAC

Deserialize

Transport

EM

MAC

Transform

Subsystem Core Developed by Subsystem Engineers

Interface
Developed by Subsystem Engineer with STITCHES Autogenerated Libraries
Developed once per Core Version, Works for all SoS Configurations

HCAL Autogenerated by STITCHES; Tailored to Each SoS Configuration

HCAL: Heterogeneous CAL
CAL: Critical Abstraction Layer
MAC: Message Authentication Code
EM: Execution Monitor
SSI: Subsystem Interface

SSI Shim

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Community Specifications

(Distributed)

STITCHES

STITCHES is Focused on Implementing a Scalable
Approach to Building SoS Capabilities

19

Field & Transform Graph Automated Design

Space Exploration

SoS

Configurations

Compile

Interfaces

Instantiated

Subsystems

Subsystem Specs

SoS Specification • Design Space Exploration

– Process FTG to Construct
Transformation Chains

– Specify HCAL Stack by forming &
solving optimization problems

• Compiler

– Construct HCAL Stack Structure

– Optimize Transforms for this
Instance of the Interface

– Provide Structural Cyber Security
through heterogeneity and
whitelist property enforcement

– Generate C++/Java Code &
Compile into binaries

Result: High Performance Interfaces Optimized For Each Application

Base Subsystems

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

SS and SoS Specs Define the Remaining Elements
of the System in an Efficient Way

20

SubSystem Specifications

For Each SubSystem:
• Input Interfaces

• Messages (FTG Node)
• Output Interfaces

• Messages (FTG Nodes)
• Resources

• Supported Languages
• Supported Transports
• Supported Serialization
• Computational Resources

SoS Specification

Defines Each SubSystem(SS):
• SS Instance Name & Type

Defines Each Connection between SSes
• Source Information (1 or more)

• SS Instance Name
• SS Interface

• Destination Information
• SS Instance Name
• SS Interface

• Message Flows (1 or more)
• Source Message(s)
• Destination Message

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Walking through the Steps…

• Create a STITCHES Enabled Subsystem (Time: ~Days; Freq: Once per SS version)

– Start with an existing Subsystem (SS) core

– SS Engineer Models the interface in the FTG (creates nodes)

– STITCHES auto-generates SS Interface (SSI) Skeleton; SS engineer completes SSI

– SS Engineer adds FTG links to other nodes to connect to a community

– Check in the FTG
(including annotations and verification with tools such as Rockwell’s AGREE)

• Create a New SoS (Time: ~Hours; Frequency: Once per SoS)

– SoS engineer defines the SoS Specification (SSes and their connections)

– If needed, SoS engineer must add any missing required links in the FTG

– Check in New FTG including incremental verification (with tools such as AGREE)

– SoS engineer runs STITCHES on the SoS Specification to Build the SoS (generate code)

• FTG Provides Re-Use without Common Interfaces

– An FTG Node is re-used in many messages

– Messages are re-used in many subsystem interfaces

– Subsystems are re-used in many SoSes

21

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Next We Walk Through a Few of the More
Interesting Features in STITCHES

1. Architectural Evolution (both Backwards & Forwards Compatibility)

2. Compiler Converts a Specification to Running Systems

3. Compile Time Performance

4. Run Time Performance

5. Integrating Legacy Systems that Can’t be Changed

6. Cyber Resiliency via AutoGenerated Runtime Enforcement of
White List Property

7. Synchronizing Transformations

8. Hierarchical Definitions Including Resilient Backup Configurations

22

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Evolution of the Architecture:
Backwards Compatibility
• Let’s Remember Our Simple 3 Subsystem ISR SoS

– Radar: Produces AR.Radar.DwellMsg

– Tracker: Consumes: STR.Tracker.SensorMsg; Produces: STR.Tracker.TrackMsg

– Display: Consumes: G.Display.SensorMsg, G.Display.TrackMsg

– Connections: Radar -> Tracker; Radar->Display; Tracker->Display

• Now Let’s Add in an Upgraded Radar (Includes an HRR Signature)

– Construct Transform That Assigns Each Subfield from the new to the old Message

– Now can use the new Radar anywhere that you can use the old radar (but won’t get
access to the HRR signal)

 23

AR.Radar.DwellMsg
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {Detection}

AR.Radar.HRRDwellMsg
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {HRRDet}

HRRDet
• LLPair
• {HRRSignal}

Detection
• LLPair

1

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Evolution of the Architecture:
Forwards Compatibility
• Now Let’s Add in an Upgraded Tracker (That can use HRR Signatures)

– Construct Transform That Assigns Each Subfield from the HRR Source to HRR Destination

– Now the New Tracker can use the HRR Signals from the new Radar

24

STR.Tracker.HRRMsg
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {HRRDets}

AR.Radar.HRRDwellMsg
• Source
• Time
• Coverage
• ProbDetect
• NumDetects
• {HRRDets}

AR.Radar.

DwellMsg

LM.Tracker.

InputMessage

NG.Radar

Message1

AF.OMS.

RadarMessage

STR.Tracker.

SensorMsg

G.Display.

SensorMsg

AR.Radar.

HRRDwellMsg

STR.Tracker.

HRRMsg

1

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

The STITCHES Compiler, Motivation

• In general, Design Space Exploration (DSE) chooses the HCAL’s functionality –
the what not the how:

– “Transform from MsgA to MsgB using this chain”, …

– “Then check these properties with an Execution Montior”, …

– “Then serialize using Google Protocol Buffers”, …

– “Then send to Destination via ZeroMQ”

• Compiler Transforms This Description into Executable Implementations (How)

– For any HCAL, there are many possible implementations

– Objective implementations are secure, performant and interoperate with any
STITCHES compiler

• A more traditional approach is to use a framework
(common super-classes, generic interfaces, etc)

– Because we generate the code after we see the optimized SoS Config,
we don’t need a framework!

– Enables significantly more compile time validation and optimization

25 2

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

The Compiler Transforms the Specification Into
Running Code

• HCAL Intermediate Language (HIL) is designed for
human use to fully specify stacks and transformations

– Provides high-level functions, allows complex nested
expressions, and provides syntactic sugar to simplify use

– Creates fully-defined type system allowing compile-time
validation and reduced run-time errors

– Parsed from a format that is human readable and
editable, to allow for inspection, debugging and testing

• Core Internal Representation (IR) is designed for
machine analysis (optimization and code generation)

– Creates an explicit representation that is more easily
reasoned over for the purposes of optimization

– Adds variable names to intermediary products to ease
code generation in both Java and C++

• Target Languages of Java and C++ allow for wide
applicability of the result

26

Core IR

HIL

Java
CodeGen

C++
CodeGen

Java C++

HIL -> Core

XML from DSE

XML -> HIL

Representation

Translation

2

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Does STITCHES Scale to Relevant Sized SoSes?

27

NFOV NFOV

• Simple ISR SoS

– WAMI, Tracker, Display, SRM and
Variable Number of NFOV Sensors

– Connections:

• WAMI->Display; WAMI->Tracker

• Tracker->Display;

• Display->Tracker; Tracker->SRM;

• SRM->NFOV

• NFOV->Tracker; NFOV->Display

• Complexity Grows with N(# NFOVs)

– # Subsystems = N + 4

– # Connections = 3N + 5

• Note: Execution Monitors Are
Disabled in These Runs

Number of NFOV Sensors in SoS

WAMI

Tracker Display

SRM

R
u

n
ti

m
e

(S
ec

o
n

d
s)

NFOV

3

WAMI = Wide Area Motion Imagery
NFOV = Narrow Field of View

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Handling Packed Representations

28

• Many real systems mix their interface definition with their implementation

– Result is a serialized (Packed) form of the interface that can represent multiple different
interface messages (e.g., STANAG 4607) with descriptor words for run time resolution

– Packed messages are often used for run-time efficiency - they tend to be the big / high
rate messages in the system. So don’t want to unpack if not necessary

• Mirrored Unpacked Nodes Provide an Effective and Efficiency Solution

– Create a Second Unpacked Node that Contains a Structured Version of the Interface

– Create Transforms between the Unpacked and Packed Nodes

– Interact with other Interfaces via their Unpacked Representations

– Auto-generate the Desired (high performance) Packed-to-Packed Transforms

Unpacked Msg1

Packed Msg1

Unpacked Msg2

Packed Msg2
Auto-generated

Transform Chain

4

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

STITCHES Uses Post-Composition Optimization

29

Core IR

HIL

Java
CodeGen

C++
CodeGen

Java C++

HIL -> Core

Optimizer

XML

XML -> HIL

• STITCHES assembles sequences of
transforms that may involve:

– Frequent copying

– Duplicated computation

– Inverted computations: e.g.,
ToBytes(ToDouble(input[:800]:bytes));

– Inefficient extra looping over the same data

• Current Optimizations

– Simplification to remove assignments

– De-duplication of computation

– Peephole Optimizations to replace code
sequences with faster equivalents

– Loop fusion to combine operations on the
same data over multiple loops (not included
in performance results on next slide)

– Note: the optimizer currently only optimizes
in the transform layers

4

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Optimized Performance:
[Packed → Unpacked → Unpacked → Packed] vs. [Packed → Packed]

30

Connection

PUUP
vs PP

Java HCALS C++ HCALs

Speed
Mbps

Latency
ms

Speed
Mbps

Latency
ms

R1 -> T1 (No Transform) PUUP 3000±35 1.1±0.1 2889±52 0.7±0.1

R1 -> T1 (No Transform) PP 3005±18 1.0±0.1 2897±38 0.7±0.1

R1 -> T2 (Only Change Time) PUUP 1972±18 1.1±0.1 2891±38 0.7±0.1

R1 -> T2 (Only Change Time) PP 1967±22 1.2±0.1 2889±53 0.7±0.1

R1 -> T3 (Switch Order Lat, Lon) PUUP 1100±9 1.5±0.1 1035±32 1.1±0.1

R1 -> T3 (Switch Order Lat, Lon) PP 1058±9 1.6±0.1 1042±25 1.2±0.1

R1 -> T4 (Change All Fields) PUUP 685±5 2.0±0.1 963±23 1.2±0.1

R1 -> T4 (Change All Fields) PP 755±7 1.9±0.1 898±21 1.3±0.05

MAC and Execution Monitors are Disabled for these Performance Runs
All interactions via localhost, so no network latencies are involved
Data Gathered on a Standard Quad Core Workstation

4

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Unifying Legacy and STITCHES Enabled SSes

• What Makes a Subsystem STITCHES Enabled?

1. Implements an SS Interface (SSI):

• Converts between core and FTG interface

• Provides FTG messages to an HCAL process
(currently through a named pipe)

2. Provides a Local Computational Resource to
Host an HCAL Locally

• Legacy Systems Can’t be Changed

1. No Issue Implementing an SSI

• Interaction with the Core is more
complicated (via legacy protocol)

• Otherwise it is the same

2. Need to Host HCAL Somewhere Else

31

SS Core

SS Interface

Transform

DeSerialize

Transport

SSI Shim

Convert FTG Core

Transport & Deserialize

Serialize & Transport

SoS Independent Code

SoS Dependent Code

SS Core

Legacy Int

Transform

SSI Shim

Convert FTG Core

Transport & Deserialize

Serialize & Transport

Interact with Core

Interact with Core

Legacy
Protocol

DeSerialize

Transport

5

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Clean Solution is to Host the HCAL on an
Open Compute Environment (OCE)
• Legacy Interface (LINT) Now Acts as a

Remote SS Core

– Connections with the SSI Shim are
the same as if it were local (pipes)

– Can Split/Join Feeds in the HCAL if
multiple Connections are Required

• Further Optimization is Possible

– Move the LINTs to the Subsystem

– Remove the Extra Serialize, Transport,
Transport, Deserialize Layers

• Optimization Would Break A Key
Assumption in Current Architecture

– LINTs act like a SS Interface – which
only exist in one place

– Resilient SoS Config Sometimes
Require LINTs Feeds to be in multiple HCAL Stacks

– Note, equivalent to the optimization of letting software only SSes live on another HCAL

32

SS Core

SS Interface

Deserialize

Transport

SSI Shim

SS Core

Legacy Int

Serialize

Transport

SSI Shim

Legacy
Protocol

Subsystem
Compute

Environment
Open Compute

Environment

Transform

5

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Cyber Resiliency

• Use Detailed Information on Interface Properties to
Improve System Cyber Defenses

– Auto generate distributed whitelist enforcement (EMs) of field,
message and SoS properties based this specific composition

– Provide a minimal, unpredictable attack surface via
heterogeneous implementations of the minimal interface
needed for this composition’s interactions

• Execution Monitors Provide a Framework for Loading
White List Property Checks Into the HCAL

– Property checks written into the FTG nodes

– Automatically loaded into the EM based on available resources

– If Any Property Check Fails, the Message is Suppressed

• Current Version of STITCHES Also Supports MAC (Message
Authentication Codes) for Crypto Signatures

33

SS

Interface

EM

Transform

Serialize

Transport

EM

H
C

A
L

MAC

6

HCAL: Heterogeneous CAL
CAL: Critical Abstraction Layer
MAC: Message Authentication Code
EM: Execution Monitor

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Synchronizing Transforms Handle the Stateful
Logic for Asynchronous Message Inputs

• Case 1: Combine Messages From Multiple Sources

– Example: Tag EO Messages with GPS Time

– Messages are still independent, so no requirement on message delivery

– First Argument is FIFO (First In, First Out) Processed, All Others are Port Sampled
(Most Recently Received)

• Case 2: Fragmentation Logic Differences Between Source and Destination

– Example: STANAG 4607 (Dwell is sent as a sequence of Header, Data[], Trailer)

– Must Impedance match between different fragmentation standards

– Messages are dependent – If you drop one, the entire dwell is invalid

– Interface is defined by the Logical Message (Dwell), but implemented “Virtually” by a
sequence of messages (subfields of Dwell)

– Only the first argument of a Synchronizing Transform can be implemented “Virtually”

• Synch Transforms Use a Simple State Machine Construct with Three Actions

– Init Block: Construct Persistent Context Variables

– Inc Block: Increment the current state (mutation!) based on the new message

– Term Block: Finish processing the current context and then close it

 34 7

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

A Simple Example: Defragmenting a Dwell

35

AR.Radar.Message3
• header: AR.Radar.Header
• dets[:32]: AR.Radar.Data
• trailer: AR.Radar.Trailer

AR.Tracker.Message1
• Source: AR.Tracker.Source
• Time: AR.Tracker.Time
• Coverage: AR.Tracker.Coverage
• ProbDetect: AR.Tracker.ProbDetect
• NumDetects: AR.Tracker.NumDetects
• Dets[:512]: AR.Tracker.Detections

AR.Radar.Header
• Source: AR.Radar.Source
• Time: AR.Radar.Time
• Cov: AR.Radar.Coverage
• PD: AR.Radar.PD

Source Msg: AR.Radar.Message3 (Virtual)
Destination Msg: AR.Tracker.Message1

Context Variable
 detections[:512]:AR.Radar.Det;
Init Bind on AR.Radar.Header
 Source = Assign(in.Source);
 Time = Assign(in.Time);
 Coverage = Assign(in.Cov);
 ProbDetect = Assign(in.PD);
Inc Bind on AR.Radar.Data
 Append(detections, in);
Term Bind on AR.Radar.Trailer
 Dets=Assign(detections);
 NumDetects = AR.Tracker.NumDetects
 {Value = Len(detections)};
 send out;

AR.Radar.Data
• dets[:16]:AR.Radar.Det

Special Variables:

 in: message just received

 out: instance of Destination message

7

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Hierarchical SoSes

36

• Incorporate SSes that are Actually Implemented as SoSes (SSS)

• What Makes a Subsystem a Subsystem (to STITCHES)?
– Provides a Set of Interfaces for SoS Composition

– We Don’t Need to Understand Where Those Interfaces are Implemented
(Abstraction of Interfaces Allows Efficient Hierarchical SoS Composition)

System of Systems applies hierarchically

– Components into an electronic “box”

– Boxes connected via an avionics bus

– Avionics buses on an aircraft

– Aircraft in a flight

Every System of Systems is a System
and is Composed of Systems

– We use System of Systems (SoS) for
the composed system

– We use SubSystem (SS) for the
systems being composed

Systems

8

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Consider a Subsystem Defined by a Simple SoS
Configuration with (Pseudo) Spec

37

Subsystems:
 R1: Int1:R1.Msg
 T: Int1:T.In; Int2:T.Out
 D: Int1:D.In
Connections:
 R1:Int1:R1.Msg->T:Int1:T.In
 T:Int2:T.Out->D:Int1:D.In

R1 T D

RTD: Single Config SSS
 Subsystems: R1; T; D
 Internal Connections:
 R1:Int1:R1.Msg->T:Int1:T.In
 T:Int2:T.Out->D:Int1:D.In
 External Interfaces:
 Int1:D.In <- D:Int1:D.In

• Consider a Simple 3 SS SoS

– Radar feeds a Tracker

– Tracker feeds a Display

• Define a Single Config SoS SS (SC-SSS)

– Internal Connections Define How the
SC-SSS is Wired Up

– External Interfaces Define How Other
SSes can Interact with it

– External Interfaces are Implemented by
an Internal Interface

• RTD Can Now Be Used as a SS in
Other SoS Configurations

– Note: A SS can only be directly used in
a Single SoS

R1 T D RTD

8

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Composing a SSS with Other SSes

38

Subsystems:
 W: Int1:W.Msg
 WT: Int1:WT.In; Int2:WT.Out
 RTD: Int1:D.In
Connections:
 W:Int1:W.Msg->WT:Int1:WT.In
 WT:Int2:WT.Out->RTD:Int1:D.In

W WT RTD • Consider a Simple 3 SS SoS

– WAMI feeds a WAMI Tracker

– WAMI Tracker feeds an RTD

• DSE Will Solve for RTD, then Compose

– Mitigate Sub-optimality by Maximizing
Margin on SSes that Implemented SSS
Interfaces (D in this case)

– Assembles HCAL constraints on D from
both RTD Composition and W-T-RTD
Composition

– Early prototype of real-world
functionality to support SSes used in
Multiple SoSes

W WT

R1 T D RTD

8

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Handling Resilient Configurations is a State
Dependent Transform
• STITCHES Uses Small Optimized Interfaces Tailored for Specific Configuration

– Transforms remove information that the destination doesn’t need

– Interfaces that aren’t used are blocked to reduce attack surface and
minimize waste network traffic

• Traditional OSA Operates at the Other End of the Spectrum
– Translate all SS interfaces/messages to global standard for open integration

– Result is flexibility in real-time updates, but with sub-optimal performance

• Augment STITCHES to Generate HCALs with Configuration Switch Layers

– Filter messages across the stacks and to/from SSes based on the determined
Configuration State

– Operate as a State Dependent Synchronizing Transform

– Can Optimize the Sub-Stacks Based on the Specific State Configuration

• Note: STITCHES Does Not Reason Over What the State Should Be

– This is a Hard Problem and Out of Scope of Our Effort

– Configuration State is Managed by External Source (Mission Management Software,
User, etc.) and Provided Via State Management Messages

– Current Version Doesn’t Manage Transients Robustly

39 8

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Resilient Configurations as SSS

40

Subsystems:
 R1: Int1:R1.Msg
 R2: Int1:R2.Msg
 T: Int1:T.In; Int2:T.Out

R_R: Resilient Config SSS
 Modes:
 Mode1: R1
 Mode2: R2
 External Interfaces:
 RROut:CatRROut
 Mode1Impl:R1:Int1:R1.Msg
 Mode2Impl:R2:Int1:R2.Msg

Connections:
 R_R:RROut:CatRROut->T:Int1:T.In

• Consider a Simple 3 SS Resilient SoS

– Radar 1 (R1) feeds a Tracker

– Radar 2 (R2) is a backup feed for Tracker

– R1 & R2 interfaces don’t need to be the
same but must be “equivalent”

• Define a Resilient SoS SS (RC-SSS)

– Multi-Mode, with a different SS “active”
in each Mode

– Define set of external interfaces

– Define which SS implements the
External Interfaces in Each Mode

• R_R Can Now Be Used as a SS in Other
SoS Configurations

– Which Radar is Active will Change with
Mode Switch Message

R1
T

R2

8

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Resilient Config SSS Can Be Composed of
Multiple Single Config SSSes

41

Subsystems:
 R1: Int1:R1.Msg
 R2: Int1:R2.Msg
 T1: Int1:T.In; Int2:T.Out
 T2: Int1:T.In; Int2:T.Out
 D: Int1:D.In;

RT1: Single Config SSS
 Subsystems: R1; T1
 Internal Connections:
 R1:Int1:R1.Msg->T1:Int1:T.In
 External Interfaces:
 Int1:T.Out <- T1:Int2:T.Out

RT2: Single Config SSS
 Subsystems: R2; T2
 Internal Connections:
 R2:Int1:R2.Msg->T2:Int1:T.In
 External Interfaces:
 Int1:T.Out <- T2:Int2:T.Out

Mode Switch Messages Will Switch btw
 Mode 1: R1->T1->D

 Mode 2: R2->T2->D

R1 T1

R2 T2
D

R_RT: Resilient Config SSS
 Modes:
 Mode1: RT1
 Mode2: RT2
 External Interfaces:
 R_RTOut:CatRTOut
 Mode1Impl:Int1:T.Out
 Mode2Impl:Int1:T.Out

Connections:
 R_RT:R_RTOut:CatRTOut->D:Int1:D.In

RT1

RT2
R_RT

8

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Single Config SSS Can Be Composed from
Multiple Resilient Config SSSes

42

Subsystems: (Same as Before)

R_R: Resilient Config SSS
 Modes:
 Mode1: R1
 Mode2: R2
 External Interfaces:
 RROut:CatRROut
 Mode1Impl:Int1:R1.Msg
 Mode2Impl:Int1:R2.Msg

R_T: Resilient Config SSS
 Modes:
 Mode1: T1
 Mode2: T2
 External Interfaces:
 RTIn:CatRTIn
 Mode1Impl: Int1:T.In
 Mode2Impl: Int1:T.In
 RTOut:CatRTOut
 Mode1Impl: Int2:T.Out
 Mode2Impl: Int2:T.Out

SC_R_RT: Single Config SSS
 Subsystems: R_R; R_T
 Internal Connections:
 R_R:RROut:CatRROut->R_T:RTIn:CatRTIN
 External Interfaces:
 Int1:CatRTOut <- R_T:Int2:CatRTOut

Connections:
 SC_R_RT:Int1:CatRTOut->D:Int1:D.In

R1 T1

R2 T2
D

R_T R_R

SC_R_RT

Mode Switch Messages Will Switch btw
 Mode 11: R1->T1->D; Mode 12: R1->T2->D
 Mode 21: R2->T1->D; Mode 22: R2->T2->D

8

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Demonstrated Capabilities

• Global Interoperability without Global Consensus on Interface Specification

– Stateless Interactions (Message Transformations)

– Stateful Interactions (Multiple Source Messages Required to Form Destination Message)

• Efficient Reuse in and Evolution of the Architecture

• Near Real-Time Construction of the SoS from Specification

• Optimized Implementation of Interfaces that are Small and Fast

– Support for High Speed Packed Representations

• Allow Legacy Subsystems and Existing Open Architectures to Interoperate

• Cyber Defenses via Heterogeneity & Run-Time Execution Monitors

• Hierarchical & Resilient SoS Configurations that simplify complexity of large SoSes

43

