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The Goal:  Composing Systems That  
Keep Up With The Times 

• DoD has long assumed that homogeneous, fixed-configuration weapon systems 
are the only way to meet their goals of a superior military force 

– Must last a long time, so requirements are developed for 30+ years out. 

– Meeting 30 year out requirements with today’s technology is hard 

– Result is the best design possible with 20-30 year old technology and  
updates are not efficient with respect to time or cost… 

• Open Architectures Try to Solve this Problem 

– Requires enormous effort to reach a “global” consensus on the system architecture, 

• Even then, it is only a “local” version of “global” 

• Global standards have to work for everyone, so aren’t optimized for your application 

– Result is heterogeneous components in a homogeneous architecture – which doesn’t 
work because the architecture needs to evolve with the technology 

– Attempts to build flexibility into the architecture (to support heterogeneity) just result 
in overly complex infrastructures that still don’t anticipate the new technologies 

• What if Global Interoperability Didn’t Require a Common Interface at ALL? 
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Understanding the Trade between Local and 
Global Message Standards… 

• Local Message Standards 

– Flexible – You Can Add New 
Messages Easily 

– Inefficient - Require N2 Transforms 
(all pairs) for Interoperability 

 

• Global Open Standards 

– Efficient – N Transforms to/from 
the Global Standard 

– Not Flexible – Can’t change 
without tremendous effort 

 

• Incremental Standards (STITCHES) 

– Efficient – ~N Transforms for 
Interoperability 

– Flexible – You Can Add New 
Messages Easily 
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Transform M2 <- M1:   
 M2 = T21(M1) 
Transform M5 <- M1:   
 M5 = T51(M1) 

Transform M2 <- M1:   
 M2 = T2G(TG1(M1)) 
Transform M5 <- M1:   
 M5 = T5G(TG1(M1)) 

Transform M2 <- M1:   
 M2 = T21(M1)) 
Transform M5 <- M1:   
 M5 = T54(T43(T32(T21(M1)))) 

M# = Message # 
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Capabilities We Set Out to Develop 

• Global Interoperability without Global Consensus on Interface Specification 

– Stateless Interactions (Message Transformations) 

– Stateful Interactions (Multiple Source Messages Required to Form Destination Message)  

• Efficient Reuse in and Evolution of the Architecture 

• Near Real-Time Construction of the SoS from Specification 

• Optimized Implementation of Interfaces that are Small and Fast 

– Support for High Speed Packed Representations 

• Allow Legacy Subsystems and Existing Open Architectures to Interoperate 

• Cyber Defenses via Heterogeneity & Run-Time Execution Monitors 

• Hierarchical and Resilient SoS Configurations 
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Key Innovation:  
Field and Transform Graph (FTG) 

• Fields are Nodes in the Graph and Contain: 
– A set of subfields (which are defined by other nodes in the graph) 

– A set of properties (mathematically precise specification of node properties) 

– Note: All node information is defined locally, no coordination required! 

• Nodes are Connected by Links That Define the Transform from  
Source to Destination Nodes 
– Each link requires a pair wise human coordination between the  

source and destination 

– Transforms Expressed in a Domain Specific Language Built for this Purpose 

– Graph algorithms determine a composition of transforms (path through  
the FTG) that produce the destination message given a source message 

• No Global Coordination Required to Update or Evolve Data in  
the FTG 
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Example of Building Out the FTG 
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Start with Sensor 1 (Order Doesn’t Really Matter, but Details are Order Dependent) 

AR.Sensor1.OutputMessage 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {Detections} 
{Properties} 

Each referenced subfield type 
points to another FTG node 

[Just showing time here] 

AR.Sensor1.Time 
• Value 
{Properties} 

Color Code: 
Black is a Field Node that represents a Message 
Red is a sub-Field Instance Name (referring to a Field Node as its type) 
Blue is for Properties (not demonstrated here) 
Green is for Transforms (used in later slides) 
Purple/Pink is Voice Track Information 
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Add in a Tracker Message 
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AR.Sensor1.OutputMessage 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {Detections} 
{Properties} 

AR.Sensor1.Time 
• Value 
{Properties} 

AR.Tracker.InputMessage 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {Detections} 
{Properties} 

AR.Tracker.Time 
• Value 
{Properties} 

Add in the Tracker 
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Define a Transform 
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AR.Sensor1.OutputMessage 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {Detections} 
{Properties} 

AR.Sensor1.Time 
• Value 
{Properties} 
Transforms 

AR.Tracker.InputMessage 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {Detections} 
{Properties} 

AR.Tracker.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Sensor1.Time -17) 

Now Define a Transform 
From AR.Sensor1.Time to 

AR.Tracker.Time 
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Add in the Reverse Transform 
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Add in a Reverse Transform 
from AR.Tracker.Time to 

AR.Sensor1.Time 

AR.Sensor1.OutputMessage 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {Detections} 
{Properties} 

AR.Sensor1.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Tracker.Time +17) 
 

AR.Tracker.InputMessage 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {Detections} 
{Properties} 

AR.Tracker.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Sensor1.Time -17) 
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Add in a Display Message 
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AR.Display.SensorInputMessage 
• Source 
• Time 
• Coverage 
• NumDetects 
• {Detections} 
{Properties} 

AR.Display.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Sensor1.Time -36) 
 

Add In a Display, and map AR.Sensor1.Fields to AR.Display.Fields 

AR.Sensor1.OutputMessage 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {Detections} 
{Properties} 

AR.Sensor1.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Tracker.Time +17) 
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Add in the Reverse Transform 
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AR.Display.SensorInputMessage 
• Source 
• Time 
• Coverage 
• NumDetects 
• {Detections} 
{Properties} 

AR.Display.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Sensor1.Time -36) 
 

and add in the Reverse Maps 
from AR.Display.Fields back to 

AR.Sensor1.Fields 

AR.Sensor1.OutputMessage 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {Detections} 
{Properties} 

AR.Sensor1.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Tracker.Time +17) 
   return (AR.Display.Time+36) 
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What about the Gaps 
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Tracker Also Has An Output Message 

AR.Tracker.OutputMessage 
• Source 
• Time 
• NumTracks 
• {Tracks} 
{Properties} 

AR.Tracker.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Sensor1.Time -17) 

AR.Display.TrackerInputMessage 
• Source 
• Time 
• NumTracks 
• {Tracks} 
{Properties} 

AR.Display.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Sensor1.Time -36) 
 

And the Display has an Track Input Message 

… but there is no Transform from 
AR.Tracker.Time Directly to AR.Display.Time 
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Transform Chains Can Resolve the Gaps 
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AR.Tracker.OutputMessage 
• Source 
• Time 
• NumTracks 
• {Tracks} 
{Properties} 

AR.Tracker.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Sensor1.Time -17) 

AR.Display.TrackerInputMessage 
• Source 
• Time 
• NumTracks 
• {Tracks} 
{Properties} 

AR.Display.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Sensor1.Time -36) 
 

… but there is a chain transform through 
AR.Sensor1.Time that can be constructed 

AR.Sensor1.Time 
• Value 
{Properties} 
Transforms 
   return (AR.Tracker.Time +17) 
   return (AR.Display.Time+36) 
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Assign Fields Between Messages 
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AR.Display.SensorInputMessage 
• Source 
• Time 
• Coverage 
• NumDetects 
• {Detections} 
{Properties} 

Explicitly Map Fields (via Assign operator) 
from AR.Sensor1.OutputMessage to 
AR.Display.SensorInputMessage using the 
field transforms define in the FTG 

AR.Sensor1.OutputMessage 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {Detections} 
{Properties} 
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A Simple Example To Illustrate STITCHES 

• A Number of Subsystems Have Been Developed Independently 

– Sensors (Radars, EO Cameras, WAMI, etc.), Trackers and Fusers, Display Systems, Sensor 
Resource Managers, etc. 

– No common standard for message definitions 

– Information content is compatible, so they “should” be able to interoperate 

• Want to Build Mission Configurations 

– Goal: Supply specifications of mission configurations and have the system autogenerate 
the code to make the mission work 

– Assumes that the specified mission is supported by the subsystems 

• Consider a Simple 3 Subsystem, ISR Configuration Specification 

– Radar: Produces AR.Radar.DwellMessage 

– Tracker: Consumes: STR.Tracker.SensorMessage; Produces: STR.Tracker.TrackMessage 

– Display: Consumes: G.Display.SensorMessage, G.Display.TrackMessage 

– Desired Connections: 

• Radar -> Tracker; Radar->Display; Tracker->Display 

15 

EO: Electro-Optical 
WAMI: Wide Area Motion Imagery 
ISR: Intelligence, Surveillance, 
Reconnaissance 
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Resolving the (Notional) FTG to Form Composite 
Transformations 
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Desired 
 

Transformation 

Desired 
 

Transformation 

AR.Radar. 

DwellMessage 

STR.Tracker. 

SensorMessage 

Connection 1: 
(Radar to Tracker) 

AR.Radar. 

DwellMessage 

G.Display. 

SensorMessage 

Connection 2: 
(Radar to Display) 

AR.Radar. 

DwellMessage 

LM.Tracker. 

InputMessage 

NG.Radar 

Message1 

AF.OMS. 

RadarMessage 

STR.Tracker. 

SensorMessage 

G.Display. 

SensorMessage 

Top Level FTG Relevant for this Example: 



Distribution Statement “A” (Approved for Public Release, Distribution Unlimited) 

Resolving the (Notional) FTG to Form Composite 
Transformations 
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Synthesized 
 

Composite 
Transformation 

AR.Radar. 

DwellMessage 

STR.Tracker. 

SensorMessage 

Synthesized 
 

Composite 
Transformation 

Connection 1: 
(Radar to Tracker) 

AR.Radar. 

DwellMessage 

G.Display. 

SensorMessage 

Connection 2: 
(Radar to Display) 

AR.Radar. 

DwellMessage 

LM.Tracker. 

InputMessage 

NG.Radar 

Message1 

AF.OMS. 

RadarMessage 

STR.Tracker. 

SensorMessage 

G.Display. 

SensorMessage 

Top Level FTG Relevant for this Example: 
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Network 

What Does STITCHES Produce? 
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Interface 

Serialize 

Transport 

SSI Shim 

MAC 

Radar 
Core 

Transform 

Serialize 

Transport 

SSI Shim 

MAC 

Tracker 
Core 

Interface 

Deserialize 

Transport 

EM 

SSI Shim 

MAC 

Display 
Core 

Interface 

Serialize 

Transport 

MAC 

Splitter 

SSI Shim 

Transform 

EM 

Deserialize 

Transport 

MAC 

Deserialize 

Transport 

EM 

MAC 

Transform 

Subsystem Core Developed by Subsystem Engineers 

Interface 
Developed by Subsystem Engineer with STITCHES Autogenerated Libraries 
Developed once per Core Version, Works for all SoS Configurations 

HCAL Autogenerated by STITCHES; Tailored to Each SoS Configuration 

HCAL: Heterogeneous CAL 
CAL: Critical Abstraction Layer 
MAC: Message Authentication Code 
EM: Execution Monitor 
SSI: Subsystem Interface 

SSI Shim 
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Community Specifications 
 
 
 
 

(Distributed) 

STITCHES 

STITCHES is Focused on Implementing a Scalable 
Approach to Building SoS Capabilities 
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Field & Transform Graph Automated Design 

Space Exploration 

SoS 

Configurations 

Compile 

Interfaces 

Instantiated 

Subsystems 

Subsystem Specs 

SoS Specification • Design Space Exploration 

– Process FTG to Construct 
Transformation Chains 

– Specify HCAL Stack by forming & 
solving optimization problems 

• Compiler 

– Construct HCAL Stack Structure 

– Optimize Transforms for this 
Instance of the Interface 

– Provide Structural Cyber Security 
through heterogeneity and 
whitelist property enforcement 

– Generate C++/Java Code & 
Compile into binaries 

 

Result: High Performance Interfaces Optimized For Each Application 

Base Subsystems 
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SS and SoS Specs Define the Remaining Elements 
of the System in an Efficient Way 
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SubSystem Specifications 
 

For Each SubSystem: 
• Input Interfaces 

• Messages (FTG Node) 
• Output Interfaces 

• Messages (FTG Nodes) 
• Resources 

• Supported Languages 
• Supported Transports 
• Supported Serialization 
• Computational Resources 

SoS Specification 
 

Defines Each SubSystem(SS): 
• SS Instance Name & Type 

 
Defines Each Connection between SSes 
• Source Information (1 or more) 

• SS Instance Name 
• SS Interface 

• Destination Information 
• SS Instance Name 
• SS Interface 

• Message Flows (1 or more) 
• Source Message(s) 
• Destination Message 
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Walking through the Steps… 

• Create a STITCHES Enabled Subsystem (Time: ~Days; Freq: Once per SS version) 

– Start with an existing Subsystem (SS) core 

– SS Engineer Models the interface in the FTG (creates nodes) 

– STITCHES auto-generates SS Interface (SSI) Skeleton; SS engineer completes SSI 

– SS Engineer adds FTG links to other nodes to connect to a community 

– Check in the FTG  
(including annotations and verification with tools such as Rockwell’s AGREE) 

• Create a New SoS (Time: ~Hours; Frequency: Once per SoS) 

– SoS engineer defines the SoS Specification (SSes and their connections) 

– If needed, SoS engineer must add any missing required links in the FTG  

– Check in New FTG including incremental verification (with tools such as AGREE) 

– SoS engineer runs STITCHES on the SoS Specification to Build the SoS (generate code) 

• FTG Provides Re-Use without Common Interfaces 

– An FTG Node is re-used in many messages 

– Messages are re-used in many subsystem interfaces 

– Subsystems are re-used in many SoSes 
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Next We Walk Through a Few of the More 
Interesting Features in STITCHES 

1. Architectural Evolution (both Backwards & Forwards Compatibility) 

2. Compiler Converts a Specification to Running Systems 

3. Compile Time Performance 

4. Run Time Performance 

5. Integrating Legacy Systems that Can’t be Changed 

6. Cyber Resiliency via AutoGenerated Runtime Enforcement of 
White List Property 

7. Synchronizing Transformations 

8. Hierarchical Definitions Including Resilient Backup Configurations 
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Evolution of the Architecture:  
Backwards Compatibility 
• Let’s Remember Our Simple 3 Subsystem ISR SoS 

– Radar: Produces AR.Radar.DwellMsg 

– Tracker: Consumes: STR.Tracker.SensorMsg; Produces: STR.Tracker.TrackMsg 

– Display: Consumes: G.Display.SensorMsg, G.Display.TrackMsg 

– Connections: Radar -> Tracker; Radar->Display; Tracker->Display 

• Now Let’s Add in an Upgraded Radar (Includes an HRR Signature) 

– Construct Transform That Assigns Each Subfield from the new to the old Message 

 

 

 

 

 

 

 

– Now can use the new Radar anywhere that you can use the old radar (but won’t get 
access to the HRR signal) 
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AR.Radar.DwellMsg 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {Detection} 

AR.Radar.HRRDwellMsg 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {HRRDet} 

HRRDet 
• LLPair 
• {HRRSignal} 

Detection 
• LLPair 

1 
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Evolution of the Architecture:  
Forwards Compatibility 
• Now Let’s Add in an Upgraded Tracker (That can use HRR Signatures) 

– Construct Transform That Assigns Each Subfield from the HRR Source to HRR Destination 

 

 

 

 

 

 
– Now the New Tracker can use the HRR Signals from the new Radar 
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STR.Tracker.HRRMsg 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {HRRDets} 

AR.Radar.HRRDwellMsg 
• Source 
• Time 
• Coverage 
• ProbDetect 
• NumDetects 
• {HRRDets} 

AR.Radar. 

DwellMsg 

LM.Tracker. 

InputMessage 

NG.Radar 

Message1 

AF.OMS. 

RadarMessage 

STR.Tracker. 

SensorMsg 

G.Display. 

SensorMsg 

AR.Radar. 

HRRDwellMsg 

STR.Tracker. 

HRRMsg 

1 
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The STITCHES Compiler, Motivation 

• In general, Design Space Exploration (DSE) chooses the HCAL’s functionality –  
the what not the how: 

– “Transform from MsgA to MsgB using this chain”, … 

– “Then check these properties with an Execution Montior”, … 

– “Then serialize using Google Protocol Buffers”, … 

– “Then send to Destination via ZeroMQ” 
 

• Compiler Transforms This Description into Executable Implementations (How) 

– For any HCAL, there are many possible implementations 

– Objective implementations are secure, performant and interoperate with any 
STITCHES compiler 

 

• A more traditional approach is to use a framework  
(common super-classes, generic interfaces, etc) 

– Because we generate the code after we see the optimized SoS Config,  
we don’t need a framework! 

– Enables significantly more compile time validation and optimization 
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The Compiler Transforms the Specification Into 
Running Code 

• HCAL Intermediate Language (HIL) is designed for 
human use to fully specify stacks and transformations 

– Provides high-level functions, allows complex nested 
expressions, and provides syntactic sugar to simplify use 

– Creates fully-defined type system allowing compile-time 
validation and reduced run-time errors 

– Parsed from a format that is human readable and 
editable, to allow for inspection, debugging and testing 

• Core Internal Representation (IR) is designed for 
machine analysis (optimization and code generation) 

– Creates an explicit representation that is more easily 
reasoned over for the purposes of optimization 

– Adds variable names to intermediary products to ease  
code generation in both Java and C++ 

• Target Languages of Java and C++ allow for wide 
applicability of the result 
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Core IR 

HIL 

Java 
CodeGen 

C++ 
CodeGen 

Java C++ 

HIL -> Core 

XML from DSE 

XML -> HIL 

Representation 

Translation 

2 
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Does STITCHES Scale to Relevant Sized SoSes? 
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NFOV NFOV 

• Simple ISR SoS 

– WAMI, Tracker, Display, SRM and 
Variable Number of NFOV Sensors 

– Connections: 

• WAMI->Display; WAMI->Tracker 

• Tracker->Display;  

• Display->Tracker; Tracker->SRM;  

• SRM->NFOV 

• NFOV->Tracker; NFOV->Display 

• Complexity Grows with N(# NFOVs) 

– # Subsystems = N + 4 

– # Connections = 3N + 5 

• Note: Execution Monitors Are 
Disabled in These Runs 

 
Number of NFOV Sensors in SoS 

WAMI 

Tracker Display 

SRM 

R
u

n
ti

m
e 

(S
ec

o
n

d
s)

 

NFOV 

3 

WAMI = Wide Area Motion Imagery 
NFOV = Narrow Field of View 



Distribution Statement “A” (Approved for Public Release, Distribution Unlimited) 

Handling Packed Representations 
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• Many real systems mix their interface definition with their implementation 

– Result is a serialized (Packed) form of the interface that can represent multiple different 
interface messages (e.g., STANAG 4607) with descriptor words for run time resolution 

– Packed messages are often used for run-time efficiency - they tend to be the big / high 
rate messages in the system. So don’t want to unpack if not necessary 

• Mirrored Unpacked Nodes Provide an Effective and Efficiency Solution 

– Create a Second Unpacked Node that Contains a Structured Version of the Interface 

– Create Transforms between the Unpacked and Packed Nodes 

– Interact with other Interfaces via their Unpacked Representations 

– Auto-generate the Desired (high performance) Packed-to-Packed Transforms 

Unpacked Msg1 

Packed Msg1 

Unpacked Msg2 

Packed Msg2 
Auto-generated 

Transform Chain 

4 
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STITCHES Uses Post-Composition Optimization 
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Core IR 

HIL 

Java 
CodeGen 

C++ 
CodeGen 

Java C++ 

HIL -> Core 

Optimizer 

XML 

XML -> HIL 

• STITCHES assembles sequences of 
transforms that may involve: 

– Frequent copying 

– Duplicated computation 

– Inverted computations: e.g.,  
ToBytes(ToDouble(input[:800]:bytes));  

– Inefficient extra looping over the same data 

• Current Optimizations 

– Simplification to remove assignments 

– De-duplication of computation 

– Peephole Optimizations to replace code 
sequences with faster equivalents 

– Loop fusion to combine operations on the 
same data over multiple loops (not included 
in performance results on next slide) 

– Note: the optimizer currently only optimizes 
in the transform layers 
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Optimized Performance: 
[Packed → Unpacked → Unpacked → Packed] vs. [Packed → Packed] 
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Connection 

PUUP 
vs PP  

Java HCALS C++ HCALs 

Speed 
Mbps 

Latency 
ms 

Speed 
Mbps 

Latency 
ms 

R1 -> T1 (No Transform) PUUP 3000±35 1.1±0.1 2889±52 0.7±0.1 

R1 -> T1 (No Transform) PP 3005±18 1.0±0.1 2897±38 0.7±0.1 

R1 -> T2 (Only Change Time) PUUP 1972±18 1.1±0.1 2891±38 0.7±0.1 

R1 -> T2 (Only Change Time) PP 1967±22 1.2±0.1 2889±53 0.7±0.1 

R1 -> T3 (Switch Order Lat, Lon) PUUP 1100±9 1.5±0.1 1035±32 1.1±0.1 

R1 -> T3 (Switch Order Lat, Lon) PP 1058±9 1.6±0.1 1042±25 1.2±0.1 

R1 -> T4 (Change All Fields) PUUP 685±5 2.0±0.1 963±23 1.2±0.1 

R1 -> T4 (Change All Fields) PP 755±7 1.9±0.1 898±21 1.3±0.05 

MAC and Execution Monitors are Disabled for these Performance Runs 
All interactions via localhost, so no network latencies are involved 
Data Gathered on a Standard Quad Core Workstation 

4 
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Unifying Legacy and STITCHES Enabled SSes 

• What Makes a Subsystem STITCHES Enabled? 

1. Implements an SS Interface (SSI): 

• Converts between core and FTG interface  

• Provides FTG messages to an HCAL process 
(currently through a named pipe) 

2. Provides a Local Computational Resource to 
Host an HCAL Locally 

• Legacy Systems Can’t be Changed 

1. No Issue Implementing an SSI 

• Interaction with the Core is more  
complicated (via legacy protocol) 

• Otherwise it is the same 

2. Need to Host HCAL Somewhere Else 
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SS Core  

SS Interface 

Transform 

DeSerialize 

Transport 

SSI Shim 

Convert FTG  Core 

Transport & Deserialize 

Serialize & Transport 

SoS Independent Code 

SoS Dependent Code 

SS Core  

Legacy Int 

Transform 

SSI Shim 

Convert FTG  Core 

Transport & Deserialize 

Serialize & Transport 

Interact with Core 

Interact with Core 

Legacy 
Protocol 

DeSerialize 

Transport 
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Clean Solution is to Host the HCAL on an  
Open Compute Environment (OCE) 
• Legacy Interface (LINT) Now Acts as a  

Remote SS Core 

– Connections with the SSI Shim are  
the same as if it were local (pipes) 

– Can Split/Join Feeds in the HCAL if  
multiple Connections are Required 

• Further Optimization is Possible 

– Move the LINTs to the Subsystem 

– Remove the Extra Serialize, Transport,  
Transport, Deserialize Layers 

• Optimization Would Break A Key  
Assumption in Current Architecture 

– LINTs act like a SS Interface – which  
only exist in one place  

– Resilient SoS Config Sometimes  
Require LINTs Feeds to be in multiple HCAL Stacks 

– Note, equivalent to the optimization of letting software only SSes live on another HCAL 
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SS Core  

SS Interface 

Deserialize 

Transport 

SSI Shim 

SS Core  

Legacy Int 

Serialize 

Transport 

SSI Shim 

Legacy 
Protocol 

Subsystem 
Compute 

Environment 
Open Compute 

Environment 

Transform 

5 



Distribution Statement “A” (Approved for Public Release, Distribution Unlimited) 

Cyber Resiliency 

• Use Detailed Information on Interface Properties to 
Improve System Cyber Defenses 

– Auto generate distributed whitelist enforcement (EMs) of field, 
message and SoS properties based this specific composition 

– Provide a minimal, unpredictable attack surface via 
heterogeneous implementations of the minimal interface 
needed for this composition’s interactions 

• Execution Monitors Provide a Framework for Loading 
White List Property Checks Into the HCAL 

– Property checks written into the FTG nodes 

– Automatically loaded into the EM based on available resources 

– If Any Property Check Fails, the Message is Suppressed 

• Current Version of STITCHES Also Supports MAC (Message 
Authentication Codes) for Crypto Signatures 
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SS 

Interface 

EM 

Transform 
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Transport 

EM 

H
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HCAL: Heterogeneous CAL 
CAL: Critical Abstraction Layer 
MAC: Message Authentication Code 
EM: Execution Monitor 
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Synchronizing Transforms Handle the Stateful 
Logic for Asynchronous Message Inputs 

• Case 1: Combine Messages From Multiple Sources 

– Example:  Tag EO Messages with GPS Time 

– Messages are still independent, so no requirement on message delivery 

– First Argument is FIFO (First In, First Out) Processed, All Others are Port Sampled 
(Most Recently Received) 

• Case 2: Fragmentation Logic Differences Between Source and Destination 

– Example:  STANAG 4607 (Dwell is sent as a sequence of Header, Data[], Trailer) 

– Must Impedance match between different fragmentation standards  

– Messages are dependent – If you drop one, the entire dwell is invalid  

– Interface is defined by the Logical Message (Dwell), but implemented “Virtually” by a 
sequence of messages (subfields of Dwell) 

– Only the first argument of a Synchronizing Transform can be implemented “Virtually” 

• Synch Transforms Use a Simple State Machine Construct with Three Actions 

– Init Block: Construct Persistent Context Variables 

– Inc Block: Increment the current state (mutation!) based on the new message 

– Term Block: Finish processing the current context and then close it 
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A Simple Example: Defragmenting a Dwell 
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AR.Radar.Message3 
• header: AR.Radar.Header 
• dets[:32]: AR.Radar.Data 
• trailer: AR.Radar.Trailer 

AR.Tracker.Message1 
• Source: AR.Tracker.Source 
• Time: AR.Tracker.Time 
• Coverage: AR.Tracker.Coverage 
• ProbDetect: AR.Tracker.ProbDetect 
• NumDetects: AR.Tracker.NumDetects 
• Dets[:512]: AR.Tracker.Detections 

AR.Radar.Header 
• Source: AR.Radar.Source 
• Time: AR.Radar.Time 
• Cov: AR.Radar.Coverage 
• PD: AR.Radar.PD 

Source Msg: AR.Radar.Message3 (Virtual) 
Destination Msg: AR.Tracker.Message1 
 

Context Variable 
 detections[:512]:AR.Radar.Det; 
Init Bind on AR.Radar.Header 
 Source = Assign(in.Source); 
 Time = Assign(in.Time); 
 Coverage = Assign(in.Cov); 
 ProbDetect = Assign(in.PD); 
Inc Bind on AR.Radar.Data 
 Append(detections, in); 
Term Bind on AR.Radar.Trailer 
 Dets=Assign(detections); 
 NumDetects = AR.Tracker.NumDetects 
  {Value = Len(detections)}; 
 send out; 

AR.Radar.Data 
• dets[:16]:AR.Radar.Det 

Special Variables: 

 in: message just received 

 out: instance of Destination message 
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Hierarchical SoSes 

36 

• Incorporate SSes that are Actually Implemented as SoSes (SSS) 

• What Makes a Subsystem a Subsystem (to STITCHES)? 
– Provides a Set of Interfaces for SoS Composition 

– We Don’t Need to Understand Where Those Interfaces are Implemented 
(Abstraction of Interfaces Allows Efficient Hierarchical SoS Composition) 

System of Systems applies hierarchically 

– Components into an electronic “box” 

– Boxes connected via an avionics bus 

– Avionics buses on an aircraft 

– Aircraft in a flight 

 

 

Every System of Systems is a System 
and is Composed of Systems 

– We use System of Systems (SoS) for 
the composed system 

– We use SubSystem (SS) for the 
systems being composed 

 

Systems 
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Consider a Subsystem Defined by a Simple SoS 
Configuration with (Pseudo) Spec 

37 

Subsystems: 
 R1: Int1:R1.Msg 
  T: Int1:T.In; Int2:T.Out 
  D: Int1:D.In 
Connections: 
 R1:Int1:R1.Msg->T:Int1:T.In 
  T:Int2:T.Out->D:Int1:D.In 

R1 T D 

RTD: Single Config SSS 
 Subsystems: R1; T; D 
 Internal Connections: 
  R1:Int1:R1.Msg->T:Int1:T.In 
  T:Int2:T.Out->D:Int1:D.In 
 External Interfaces: 
  Int1:D.In <- D:Int1:D.In 

• Consider a Simple 3 SS SoS 

– Radar feeds a Tracker 

– Tracker feeds a Display 

• Define a Single Config SoS SS (SC-SSS) 

– Internal Connections Define How the 
SC-SSS is Wired Up 

– External Interfaces Define How Other 
SSes can Interact with it 

– External Interfaces are Implemented by 
an Internal Interface 

• RTD Can Now Be Used as a SS in 
Other SoS Configurations 

– Note:  A SS can only be directly used in 
a Single SoS 

R1 T D RTD 

8 



Distribution Statement “A” (Approved for Public Release, Distribution Unlimited) 

Composing a SSS with Other SSes  

38 

Subsystems: 
   W: Int1:W.Msg 
  WT: Int1:WT.In; Int2:WT.Out 
 RTD: Int1:D.In 
Connections: 
  W:Int1:W.Msg->WT:Int1:WT.In 
 WT:Int2:WT.Out->RTD:Int1:D.In 
 

W WT RTD • Consider a Simple 3 SS SoS 

– WAMI feeds a WAMI Tracker 

– WAMI Tracker feeds an RTD 

• DSE Will Solve for RTD, then Compose 

– Mitigate Sub-optimality by Maximizing 
Margin on SSes that Implemented SSS 
Interfaces (D in this case) 

– Assembles HCAL constraints on D from 
both RTD Composition and W-T-RTD 
Composition 

– Early prototype of real-world 
functionality to support SSes used in 
Multiple SoSes 

W WT 

R1 T D RTD 
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Handling Resilient Configurations is a State 
Dependent Transform 
• STITCHES Uses Small Optimized Interfaces Tailored for Specific Configuration 

– Transforms remove information that the destination doesn’t need 

– Interfaces that aren’t used are blocked to reduce attack surface and  
minimize waste network traffic 

• Traditional OSA Operates at the Other End of the Spectrum 
– Translate all SS interfaces/messages to global standard for open integration 

– Result is flexibility in real-time updates, but with sub-optimal performance 

• Augment STITCHES to Generate HCALs with Configuration Switch Layers 

– Filter messages across the stacks and to/from SSes based on the determined 
Configuration State 

– Operate as a State Dependent Synchronizing Transform 

– Can Optimize the Sub-Stacks Based on the Specific State Configuration 

• Note: STITCHES Does Not Reason Over What the State Should Be 

– This is a Hard Problem and Out of Scope of Our Effort 

– Configuration State is Managed by External Source (Mission Management Software, 
User, etc.) and Provided Via State Management Messages 

– Current Version Doesn’t Manage Transients Robustly 
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Resilient Configurations as SSS 

40 

Subsystems: 
 R1: Int1:R1.Msg 
 R2: Int1:R2.Msg 
  T: Int1:T.In; Int2:T.Out 
 
R_R: Resilient Config SSS 
 Modes: 
  Mode1: R1 
  Mode2: R2 
 External Interfaces: 
  RROut:CatRROut 
   Mode1Impl:R1:Int1:R1.Msg 
   Mode2Impl:R2:Int1:R2.Msg 
 
Connections: 
 R_R:RROut:CatRROut->T:Int1:T.In 

• Consider a Simple 3 SS Resilient SoS 

– Radar 1 (R1) feeds a Tracker 

– Radar 2 (R2) is a backup feed for Tracker 

– R1 & R2 interfaces don’t need to be the 
same but must be “equivalent” 

• Define a Resilient SoS SS (RC-SSS) 

– Multi-Mode, with a different SS “active” 
in each Mode 

– Define set of external interfaces  

– Define which SS implements the 
External Interfaces in Each Mode 

• R_R Can Now Be Used as a SS in Other 
SoS Configurations 

– Which Radar is Active will Change with 
Mode Switch Message 

R1 
T 

R2 
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Resilient Config SSS Can Be Composed of  
Multiple Single Config SSSes 
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Subsystems: 
 R1: Int1:R1.Msg  
 R2: Int1:R2.Msg 
 T1: Int1:T.In; Int2:T.Out 
 T2: Int1:T.In; Int2:T.Out 
  D: Int1:D.In; 
 

RT1: Single Config SSS 
 Subsystems: R1; T1 
 Internal Connections: 
  R1:Int1:R1.Msg->T1:Int1:T.In 
 External Interfaces: 
  Int1:T.Out <- T1:Int2:T.Out 
 

RT2: Single Config SSS 
 Subsystems: R2; T2 
 Internal Connections: 
  R2:Int1:R2.Msg->T2:Int1:T.In 
 External Interfaces: 
  Int1:T.Out <- T2:Int2:T.Out 

Mode Switch Messages Will Switch btw  
 Mode 1: R1->T1->D  

 Mode 2: R2->T2->D 

R1 T1 

R2 T2 
D 

R_RT: Resilient Config SSS 
 Modes: 
  Mode1: RT1 
  Mode2: RT2 
 External Interfaces: 
  R_RTOut:CatRTOut 
   Mode1Impl:Int1:T.Out 
   Mode2Impl:Int1:T.Out 
 
Connections: 
 R_RT:R_RTOut:CatRTOut->D:Int1:D.In 

RT1 

RT2 
R_RT 
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Single Config SSS Can Be Composed from  
Multiple Resilient Config SSSes 

42 

Subsystems: (Same as Before) 
 

R_R: Resilient Config SSS 
 Modes: 
  Mode1: R1 
  Mode2: R2 
 External Interfaces: 
  RROut:CatRROut 
   Mode1Impl:Int1:R1.Msg 
   Mode2Impl:Int1:R2.Msg 
 

R_T: Resilient Config SSS 
 Modes: 
  Mode1: T1 
  Mode2: T2 
 External Interfaces: 
  RTIn:CatRTIn 
   Mode1Impl: Int1:T.In 
   Mode2Impl: Int1:T.In 
  RTOut:CatRTOut 
   Mode1Impl: Int2:T.Out 
   Mode2Impl: Int2:T.Out 

SC_R_RT: Single Config SSS 
 Subsystems: R_R; R_T 
 Internal Connections: 
  R_R:RROut:CatRROut->R_T:RTIn:CatRTIN 
 External Interfaces: 
  Int1:CatRTOut <- R_T:Int2:CatRTOut 
 

Connections: 
 SC_R_RT:Int1:CatRTOut->D:Int1:D.In 

R1 T1 

R2 T2 
D 

R_T R_R 

SC_R_RT 

Mode Switch Messages Will Switch btw  
 Mode 11: R1->T1->D;    Mode 12: R1->T2->D 
 Mode 21: R2->T1->D;    Mode 22: R2->T2->D  
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Demonstrated Capabilities 

• Global Interoperability without Global Consensus on Interface Specification 

– Stateless Interactions (Message Transformations) 

– Stateful Interactions (Multiple Source Messages Required to Form Destination Message)  

• Efficient Reuse in and Evolution of the Architecture 

• Near Real-Time Construction of the SoS from Specification 

• Optimized Implementation of Interfaces that are Small and Fast 

– Support for High Speed Packed Representations 

• Allow Legacy Subsystems and Existing Open Architectures to Interoperate 

• Cyber Defenses via Heterogeneity & Run-Time Execution Monitors 

• Hierarchical & Resilient SoS Configurations that simplify complexity of large SoSes 
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